48) Центр тяжести тела. Методы нахождения центра тяжести. Как найти центр тяжести


Центр тяжести и центр масс тела

Центр тяжести тела

Положение центра тяжести тела можно определить экспериментально. Для этого достаточно поочередно подвесить тело за две различные точки на его поверхности и провести через точки подвеса вертикали. Пересечение этих линий — линий действия сил тяжести — и определяет положение центра тяжести тела.

Центр масс тела

Координаты центра масс определяются формулами:

    \[x_c=\frac{m_1x_1+m_2x_2+\dots +m_nx_n}{m_1+m_2+\dots +m_n};\]

    \[y_c=\frac{m_1y+m_2y+\dots +m_ny_n}{m_1+m_2+\dots +m_n};\]

У однородных симметричных тел центр масс располагается в геометрическом центре тела: у круга (сферы) в его центре, у треугольника — в точке пересечения медиан, у прямоугольника — в точке пересечения диагоналей.

Механическая система всегда находится в равновесии относительно оси вращения, проходящей через ее центр масс.

В отличие от центра тяжести центр масс имеет смысл для любого тела или механической системы в то время, как центр тяжести — только для твердого тела, находящегося в однородном гравитационном поле.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

13. Центр тяжести твердого тела; центр тяжести объема, площади и линии. Способы определения положения центров тяжести тел.

Центром тяжести твердого тела называется геометрическая точка, жестко связанная с этим телом, и являющаяся центром параллельных сил тяжести, приложенных к отдельным элементарным частицам тела (рисунок 1.6).

Радиус-вектор этой точки

Рисунок 1.6

Для однородного тела положение центра тяжести тела не зависит от материала, а определяется геометрической формой тела.

Если удельный вес однородного тела  γ, вес элементарной частицы тела 

Pk = γΔVk  (P = γV) подставить в формулу для определения  rC, имеем

Откуда, проецируя на оси и переходя к пределу, получаем координаты центра тяжести однородного объема

Аналогично для координат центра тяжести однородной поверхности площадью S  (рисунок 1.7, а)

Рисунок 1.7

Для координат центра тяжести однородной линии длиной L  (рисунок 1.7, б)

Способы определения координат центра тяжести

Исходя из полученных ранее общих формул, можно указать способы определения координат центров тяжести твердых тел:

1 Аналитический (путем интегрирования).

2 Метод симметрии. Если тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

3 Экспериментальный (метод подвешивания тела).

4 Разбиение. Тело разбивается на конечное число частей, для каждой из которых положение центра тяжести C  и площадь  S известны. Например, проекцию тела на плоскость xOy  (рисунок 1.8) можно представить в виде двух плоских фигур с площадями S1  и  S2 (S = S1 + S2). Центры тяжести этих фигур находятся в точках  C1(x1, y1) и  C2(x2, y2). Тогда координаты центра тяжести тела равны

Рисунок 1.8

5 Дополнение (метод отрицательных площадей или объемов). Частный случай способа разбиения. Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Например, необходимо найти координаты центра тяжести плоской фигуры (рисунок 1.9):

Рисунок 1.9

Центры тяжести простейших фигур

Рисунок 1.10

1 Треугольник

Центр тяжести площади треугольник совпадает с точкой пересечения его медиан (рисунок 1.10, а).

 DM = MB,  CM = (1/3)AM.

2 Дуга окружности

Дуга имеет ось симметрии (рисунок 1.10, б). Центр тяжести лежит на этой оси, т.е.  yC = 0.

dl  – элемент дуги,  dl = Rdφ,  R – радиус окружности,  x = Rcosφ,  L = 2αR,

Следовательно:

 xC = R(sinα/α).

3 Круговой сектор

Сектор радиуса  R с центральным углом  2α имеет ось симметрии  Ox, на которой находится центр тяжести (рисунок 1.10, в). 

Разбиваем сектор на элементарные секторы, которые можно считать треугольниками. Центры тяжести элементарных секторов располагаются на дуге окружности радиуса  (2/3)R. 

Центр тяжести сектора совпадает с центром тяжести дуги  AB:

14. Способы задания движения точки.

При векторном способе задания движения положение точки определяется радиус-вектором, проведенным из неподвижной точки в выбранной системе отсчета. 

При координатном способе задания движения задаются координаты точки как функции времени:

Это параметрические уравнения траектории движущейся точки, в которых роль параметра играет время t. Чтобы записать ее уравнение в явной форме, надо исключить из них  t.

При естественном способе задания движения задаются траектория точки, начало отсчета на траектории с указанием положительного направления отсчета, закон изменения дуговой координаты: s=s(t) . Этим способом удобно пользоваться, если траектория точки заранее известна.

15. 1.2 Скорость точки

Рассмотрим перемещение точки за малый промежуток времени  Δt:

тогда 

средняя скорость точки за промежуток времени Dt . Скорость точки в данный момент времени

Скорость точки – это кинематическая мера ее движения, равная производной по времени от радиус-вектора этой точки в рассматриваемой системе отсчета. Вектор скорости направлен по касательной к траектории точки в сторону движения.

studfiles.net

Центр тяжести - методы нахождения.

Методы нахождения центра тяжести



Наиболее часто для нахождения центра тяжести тела или фигуры применяют следующие методы:

  • метод симметрии;
  • метод разбиения;
  • метод отрицательных масс.

Рассмотрим приемы, применяемые в каждом из перечисленных методов.

***

Метод симметрии

Представим себе однородное тело, которое имеет плоскость симметрии. Выберем такую систему координат, чтобы оси x и z лежали в плоскости симметрии (см. рисунок 1).

методы нахождения центра тяжести

В этом случае каждой элементарной частице силой тяжести Gi с абсциссой yi = +a соответствует такая же элементарная частица с абсциссой yi = -a, тогда:

yC = Σ(Gixi)/ΣGi = 0.

Отсюда вывод: если однородное тело имеет плоскость симметрии, то центр тяжести тела лежит в этой плоскости.

Аналогично можно доказать и следующие положения:

  • Если однородное тело имеет ось симметрии, то центр тяжести тела лежит на этой оси;
  • Если однородное тело имеет две оси симметрии, то центр тяжести тела находится в точке их пересечения;
  • Центр тяжести однородного тела вращения лежит на оси вращения.

***

Метод разбиения

Этот метод заключается в том, что тело разбивают на наименьшее число частей, силы тяжести и положение центров тяжести которых известны, после чего применяют приведенные ранее формулы для определения общего центра тяжести тела.

Допустим, что мы разбили тело силой тяжести G на три части G', G'', G''', абсциссы центров тяжести этих частей x'C, x''C, x'''C известны. Формула для определения абсциссы центра тяжести всего тела:

xC = Σ(Gixi)/ΣGi.

Перепишем ее в следующем виде:

xCΣGi = Σ(Gixi)     или     GxC = Σ(Gixi).

Последнее равенство запишем для каждой из трех частей тела отдельно:

G'x'C = Σ(G'x'i),     G''x''C = Σ(G''ix''i),     G'''x'''C = Σ(G'''ix'''i).

Сложив левые и правые части этих трех равенств, получим:

G'x'C + G''x''C + G'''x'''C = Σ(G'ix'i) + Σ(G''x''i) + Σ(G'''ix'''i) = Σ(Gixi).

Но правая часть последнего равенства представляет собой произведение GxC, так как

GxC = Σ(Gixi),

Следовательно, xC = (G'x'C + G''x''C + G'''x'''C)/G, что и требовалось доказать. Аналогично определяются координаты центра тяжести на координатных осях y и z:

yC = (G'y'C + G''y''C + G'''y'''C)/G, zC = (G'z'C + G''z''C + G'''z'''C)/G.

Полученные формулы аналогичны формулам для определения координат цента тяжести, выведенные выше. Поэтому в исходные формулы можно подставлять не силы тяжести элементарных частиц Gi, а силы тяжести конечных частей; под координатами xi, yi, zi понимают координаты центров тяжести частей, на которые разбито тело.

***

Метод отрицательных масс

Этот метод заключается в том, что тело, имеющее свободные полости, считают сплошным, а массу свободных полостей – отрицательной. Вид формул для определения координат центра тяжести тела при этом не меняется.

Таким образом, при определении центра тяжести тела, имеющего свободные полости, следует применять метод разбиения, но считать массу полостей отрицательной.

***

Практические методы определения центра тяжести тел

На практике для определения центра тяжести плоских тел сложной формы часто применяют метод подвешивания, который заключается в том, что плоское тело подвешивают на нити за какую-нибудь точку. Прочерчивают вдоль нити линию, и тело подвешивают за другую точку, не находящуюся на полученной линии. Затем вновь проводят линию вдоль нити. Точка пересечения двух линий и будет являться центром тяжести плоского тела.

определение центра тяжести взвешиванием

Еще один способ определения центра тяжести, применяемый на практике, называется метод взвешивания. Этот метод часто применяется для определения центра тяжести крупных машин и изделий – автомобилей, самолетов, колесных тракторов и т. п., которые имеют сложную объемную форму и точечную опору на грунт. Метод заключается в применении условий равновесия, исходя из того, что сумма моментов всех сил, действующих на неподвижное тело равна нулю. Практически это осуществляется взвешиванием одной из опор машины (задние или передние колеса устанавливаются на весы), при этом показания весов, по сути, являются реакцией опоры, которая учитывается при составлении уравнения равновесия относительно второй точки опоры (находящейся вне весов). По известной массе (соответственно – весу) тела, показанию весов в одной из точек опоры, и расстоянию между точками опоры можно определить расстояние от одной из точек опоры до плоскости, в которой расположен центр тяжести. Чтобы найти подобным образом линию (ось), на которой расположен центр тяжести машины, необходимо произвести два взвешивания по принципу, изложенному выше для метода подвешивания (см. рис. 1а).

***



Положение центра тяжести некоторых фигур

Прямоугольник. Так как прямоугольник имеет две оси симметрии, то центр тяжести его площади находится в точке пересечения этих осей, иначе говоря, в точке пересечения диагоналей прямоугольника.

положение центра тяжести треугольника и дуги

Треугольник. Пусть дан треугольник АBD (см. рисунок 2). Разобьем его на элементарные (бесконечно узкие) полоски, параллельные стороне AD. Центр тяжести каждой полоски будет лежать на медиане Bd (т. е. в середине каждой полоски), следовательно, на этой медиане будет лежать и центр тяжести всей площади треугольника. Разбив треугольник на элементарные полоски, параллельные стороне AB, увидим, что искомый центр тяжести лежит и на медиане aD. Проделав аналогичное действие с треугольником относительно стороны ВD, получим тот же результат – центр тяжести находится на соответствующей медиане. Следовательно, центр тяжести всей площади треугольника лежит на точке пересечения его медиан, поскольку эта точка является единственной общей точкой для всех трех медиан данной геометрической фигуры.

Из геометрии известно, что медианы треугольника пересекаются в одной точке и делятся в соотношении 1:2 от основания. Следовательно, центр тяжести треугольника расположен на расстоянии одной трети высоты от каждого основания.

Дуга окружности. Возьмем дугу окружности АВ радиусом R с центральным углом 2α (см. рисунок 3). Систему координат выберем так, чтобы начало координат было в центре окружности, а ось x делила дугу пополам, тогда yC = 0 вследствие симметрии дуги относительно оси x. Определим координату центра тяжести xC.

Разобьем дугу АВ на элементарные части li, одна из которых изображена на рисунке. Тогда, согласно сделанным выше выводам,

xC =Σ(lixCi)/Σli.

Дугу li вследствие малости примем за отрезок прямой. Из подобия треугольника ODiCi и элементарного треугольника S (на рисунке заштрихован) получим:

Li/Δyi = R/xCi     или     lixi = RΔyi.

Тогда:

xC =Σ(lixCi)/Σli = Σ(RΔyi)/l = RΣΔyi/l = R×AB/l,

центр тяжести сектора окружности

поскольку RΣΔyi = AB, а Σli = l – длина дуги АВ. Но АВ = 2R sinα, а l = 2Rα, следовательно,

xC = (R sinα)/α.

При α = π/2 рад (полуокружность), xC = 2R/π.

Круговой сектор. Возьмем сектор радиусом R с центральным углом 2α (см. рисунок 3а). Проведем оси координат, как показано на рисунке (ось x направлена вдоль оси симметрии сектора), тогда yC = 0.

Определим xC, для чего разобьем сектор на ряд элементарных секторов, каждый из которых из-за малости дуги li можно принять за равнобедренный треугольник с высотой R. Тогда центр тяжести каждого элементарного сектора будет находиться на дуге радиуса 2R/3 и задача определения центра тяжести сектора сводится к определению центра тяжести этой дуги. Очевидно, что

xC = 2 R sinα/(3α).

При α = π/2 рад (полукруг): xC = 4R/(3π).

***

Пример решения задачи на определение центра тяжести

нахождение центра тяжести составной фигуры или сечения

Задача: Определить положение центра тяжести сечения, составленного из двутавра № 22 и швеллера № 20, как показано на рисунке 4.

Решение. Из курса инженерной графики известно, что номер проката соответствует наибольшему габаритному размеру его сечения, выраженного в сантиметрах.

Так как сечение, составленное из двутавра и швеллера, представляет собой фигуру, симметричную относительно оси y, то центр тяжести такого сечения лежит на этой оси, т. е. xC = 0. По справочнику определим площади и координаты центров тяжести двутавра 1 и швеллера 2.

Для двутаврового сечения:  А1 = 15,2 см2;     y1= 22/2 = 11 см. Для швеллерного сечения:  А2 = 12 см2;     y2 = 22 + d – z0= 22 + 0,32 – 1,25 = 21,07 см, где d – толщина стенки швеллера; z0 – размер, определяющий положение центра тяжести швеллера.

Применим формулу для определения координаты центра тяжести всего сечения:

yC = Σ(Aiyi)/ΣAi,

тогда:

yC = (A1y1 +A2y2)/(A1 +A2) = (15,2×11 + 12×21,07)/(15,2 + 12) = 15,4 см.

Задача решена.

***

Кинематика точки



k-a-t.ru

Как найти центр тяжести фигуры? Расчет в Excel!

Опубликовано 21 Окт 2013Рубрика: Механика | 3 комментария

Две вилки и монета в равновесии на кромке бокалаВ инженерной практике случается, что возникает необходимость вычислить координаты центра тяжести сложной плоской фигуры, состоящей из простых элементов, для которых расположение центра тяжести известно. Такая задача является частью задачи определения...

...геометрических характеристик составных поперечных сечений балок и стержней. Часто с  подобными вопросами приходится сталкиваться инженерам-конструкторам вырубных штампов при определении координат центра давления, разработчикам схем погрузки различного транспорта при размещении грузов, проектировщикам строительных металлических конструкций при подборе сечений элементов и, конечно, студентам при изучении дисциплин «Теоретическая механика» и «Сопротивление материалов».

Библиотека элементарных фигур.

Формулы расчета центров тяжести и площадей плоских фигур

Для симметричных  плоских фигур центр тяжести совпадает с центром симметрии. К симметричной группе элементарных объектов относятся: круг, прямоугольник (в том числе квадрат), параллелограмм (в том числе ромб), правильный многоугольник.

Из десяти фигур, представленных на рисунке выше, только две являются базовыми. То есть, используя треугольники и сектора кругов, можно скомбинировать почти любую фигуру, имеющую практический интерес. Любые произвольные кривые можно, разбив на участки, заменить дугами окружностей.

Оставшиеся восемь фигур являются самыми распространенными, поэтому они и были включены в эту своеобразную библиотеку. В нашей классификации эти элементы не являются базовыми. Прямоугольник, параллелограмм и трапецию можно составить из двух треугольников. Шестиугольник – это сумма из четырех треугольников. Сегмент круга — это разность сектора круга и треугольника. Кольцевой сектор круга — разность двух секторов. Круг – это сектор круга с углом α=2*π=360˚. Полукруг – это, соответственно, сектор круга с углом α=π=180˚.

Расчет в Excel координат центра тяжести составной фигуры.

Передавать и воспринимать информацию, рассматривая пример, всегда легче, чем изучать вопрос на чисто теоретических выкладках.  Рассмотрим решение задачи «Как найти центр тяжести?» на примере составной фигуры, изображенной на рисунке, расположенном ниже этого текста.

Чертеж составной фигуры с координатами центра тяжести

Составное сечение представляет собой прямоугольник (с размерами a1=80 мм, b1=40 мм), к которому слева сверху добавили равнобедренный треугольник (с размером основания  a2=24 мм и высотой h3=42 мм) и из которого справа сверху вырезали полукруг (с центром в точке с координатами x03=50 мм и y03=40 мм, радиусом r3=26 мм).

В помощь для выполнения расчета привлечем программу MS Excel или программу OOo Calc. Любая из них легко справится с нашей задачей!

В ячейках с желтой заливкой выполним вспомогательные предварительныерасчеты.

В ячейках со светло-желтой заливкой считаем результаты.

Синий шрифт – это исходные данные.

Черный шрифт – это промежуточные результаты расчетов.

Красный шрифт – это окончательные результаты расчетов.

Начинаем решение задачи – начинаем поиск координат центра тяжести сечения.

Исходные данные:

1. Названия элементарных фигур, образующих составное сечение впишем соответственно

в ячейку D3: Прямоугольник

в ячейку E3: Треугольник

в ячейку F3: Полукруг

2. Пользуясь представленной в этой статье «Библиотекой элементарных фигур», определим координаты центров тяжести элементов составного сечения xci и yci в мм относительно произвольно выбранных осей 0x и 0y и запишем

в ячейку D4: =80/2=40,000

xc1=a1/2

в ячейку D5: =40/2=20,000

yc1= b1/2

в ячейку E4: =24/2=12,000

xc2=a2/2

в ячейку E5: =40+42/3=54,000

yc2= b1+h3/3

в ячейку F4: =50=50,000

xc3=x03

в ячейку F5: =40-4*26/3/ПИ()=28,965

yc3= y03-4*r3/3/π

3. Рассчитаем площади элементов F1, F2, F3 в мм2, воспользовавшись вновь формулами из раздела  «Библиотека элементарных фигур»

в ячейке D6: =40*80=3200

F1=a1*b1

в ячейке E6: =24*42/2=504

F2=a2*h3/2

в ячейке F6: =-ПИ()/2*26^2=-1062

F3= -π/2*r3^2

Площадь третьего элемента – полукруга – отрицательная потому, что это вырез – пустое место!

Таблица Excel с расчетом координат центра тяжести составной фигуры

Расчет координат центра тяжести:

4. Определим общую площадь итоговой фигуры F0 в мм2

в объединенной ячейке D8E8F8: =D6+E6+F6=2642

F0=F1+F2+F3

5. Вычислим статические моменты составной фигуры Sx и Sy в мм3 относительно выбранных осей 0x и 0y

в объединенной ячейке D9E9F9: =D5*D6+E5*E6+F5*F6=60459

Sx=yc1*F1+ yc2*F2+ yc3*F3

в объединенной ячейке D10E10F10: =D4*D6+E4*E6+F4*F6=80955

Sy=xc1*F1+ xc2*F2+ xc3*F3

6. И в завершение рассчитаем координаты центра тяжести составного сечения Xc и Yc в мм в выбранной системе координат 0x — 0y

в объединенной ячейке D11E11F11: =D10/D8=30,640

Xc=Sy/F0

в объединенной ячейке D12E12F12: =D9/D8=22,883

Yc=Sx/F0

Задача решена, расчет в Excel выполнен — найдены координаты центра тяжести сечения, составленного при использовании трех простых элементов!

Заключение.

Пример в статье был выбран очень простым для того, чтобы легче было разобраться в методологии расчетов центра тяжести  сложного сечения. Метод заключается в том, что любую сложную фигуру следует разбить на  простые элементы с известными местами расположения центров тяжести и произвести итоговые вычисления для всего сечения.

Если сечение составлено из прокатных профилей – уголков и швеллеров, то их нет необходимости разбивать на прямоугольники и квадраты с вырезанными круговыми «π/2»- секторами. Координаты центров тяжести этих профилей приведены в таблицах ГОСТов, то есть и уголок и швеллер будут в ваших расчетах составных сечений базовыми элементарными элементами (о двутаврах, трубах, прутках и шестигранниках говорить нет смысла – это центрально симметричные сечения).

Расположение осей координат на положение центра тяжести фигуры, конечно, не влияет! Поэтому выбирайте систему координат, упрощающую вам расчеты. Если, например, я развернул бы  в нашем примере систему координат на 45˚ по часовой стрелке, то вычисление координат центров тяжести прямоугольника, треугольника и полукруга превратилось бы в еще один отдельный и громоздкий этап расчетов, который «в уме» не выполнишь.

Представленный ниже расчетный файл Excel в данном случае программой не является. Скорее – это набросок калькулятора, алгоритм, шаблон по которому следует в каждом конкретном случае составлять свою последовательность формул для ячеек с яркой желтой заливкой.

Итак, как найти центр тяжести любого сечения вы теперь знаете! Полный расчет всех геометрических характеристик произвольных сложных составных сечений будет рассмотрен в одной из ближайших статей в рубрике «Механика». Следите за новостями на блоге.

Для получения информации о выходе новых статей и для скачивания рабочих файлов программ прошу вас подписаться на анонсы в окне, расположенном в конце статьи или в окне вверху страницы.

После ввода адреса своей электронной почты и нажатия на кнопку «Получать анонсы статей» НЕ ЗАБЫВАЙТЕ  ПОДТВЕРЖДАТЬ ПОДПИСКУ кликом по ссылке в письме, которое тут же придет к вам на указанную почту (иногда — в папку «Спам»)!

Несколько слов о бокале, монете и двух вилках, которые изображены на «значке-иллюстрации» в самом начале статьи. Многим из вас, безусловно, знаком этот «трюк», вызывающий восхищенные взгляды детей и непосвященных взрослых. Тема этой статьи – центр тяжести. Именно он и точка опоры, играя с нашим сознанием и опытом, попросту дурачат наш разум!

Центр тяжести системы «вилки+монета» всегда располагается на фиксированном расстоянии по вертикали вниз от края монеты, который в свою очередь является точкой опоры. Это положение устойчивого равновесия! Если покачать вилки, то сразу становится очевидным, что система стремится занять свое прежнее устойчивое положение! Представьте маятник – точка закрепления (=точка опоры монеты на кромку бокала), стержень-ось маятника (=в нашем случае ось виртуальная, так как масса двух вилок разведена в разные стороны пространства) и груз внизу оси (=центр тяжести всей системы «вилки+монета»). Если начать отклонять маятник от вертикали в любую сторону (вперед, назад, налево, направо), то он неизбежно под действием силы тяжести будет возвращаться в исходное устойчивое состояние равновесия (это же самое происходит и с нашими вилками и монетой)!

Кто не понял, но хочет понять – разберитесь самостоятельно. Это ведь очень интересно «доходить» самому! Добавлю, что этот же принцип использования устойчивого равновесия реализован и в игрушке ванька–встань-ка. Только центр тяжести у этой игрушки расположен выше точки опоры, но ниже центра полусферы опорной поверхности.

Всегда рад вашим комментариям, уважаемые читатели!!!

Прошу, УВАЖАЯ труд автора, скачивать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.

Ссылка на скачивание файла: raschet-tsentra-tyazhesti (xls 17,0KB).

Другие статьи автора блога

На главную

Статьи с близкой тематикой

Отзывы

al-vo.ru

48) Центр тяжести тела. Методы нахождения центра тяжести.

На каждую частицу тела, находящегося вблизи поверхности Земли, действует направленная вертикально вниз сила, которая называется силой тяжести. Силы тяжести каждой частицы тела, строго говоря, направлены по радиусам к центру Земли и не являются параллельными. Но для тел, размеры которых малы по сравнению с размерами Земли, непараллельность настолько незначительна, что в расчетах с большой точностью силы тяжести их частиц можно считать параллельными, сохраняющими свои значения, точки приложения и параллельность при любых поворотах тела. Поэтому, обозначив силу тяжести частицы через Рк , можно, согласно формулам и , найти точку С, которая неизменно связана с телом и называется центром системы параллельных сил тяжести. Таким образом, центром тяжести твердого тела называется центр системы параллельных сил тяжести частиц данного тела. Точка С — это геометрическая точка, она может и не принадлежать телу, но она всегда с ним связана, например центр тяжести баскетбольного мяча, кольца и др. Выразим силу тяжести (вес) частицы тела через ее объем V. Тогда величина называется удельным весом, а величина - плотностью тела в данной точке. ("гамма"-Н/м3) ("ро"-Н*с2/м4)

Методы нахождения центра тяжести.

1) Метод симметрии.

Покажем, что если однородное тело имеет плоскость, ось или центр материальной симметрии, то его центр тяжести находится соответственно в плоскости, на оси или в центре симметрии.

а. Пусть тело симметрично относительно плоскости Оху

Тогда вследствие симметрии каждому элементу К тела объемом () будет соответствовать элемент К' того же объема с координатами (,-). Поэтому статический момент объема и координата . Следовательно, центр тяжести тела будет лежать в плоскости симметрии Оху.

б. Пусть тело симметрично относительно оси Oz.

Тогда всякому элементу К тела объемом с координатами () будет соответствовать такой же по объему элемент К', расположенный симметрично относительно оси Oz и имеющий координаты (-,- ). Поэтому статические моменты и, следовательно, координаты . Таким образом, центр тяжести будет находится на оси симметрии.

в. Пусть тело имеет центр симметрии, который примем за начало координат. Тогда всякой частице тела объемом , определяемой радиус-вектором rк, будет соответствовать частица такого же объема с радиус-вектором (-rк), симметричная ей относительно центра О. Поэтому . Следовательно, центр тяжести будет находиться в центре симметрии. Например, центры тяжести однородных куба, сферы, кольца, прямоугольной или круглой пластины лежат в геометрическом центре этих тел.

2) Метод разбиения.

Этот метод основан на применении формул и . Его используют, когда тело можно разбить на ряд частей, центры тяжести которых известны из условий симметрии. Метод разбиения можно наглядно проиллюстрировать с помощью рисунка.

Расположив тело в системе координат, разделив его мысленно на отдельные части, веса которых Р1, Р2, Р3, Р4, а центры тяжести известны, вычислим вес тела и, согласно формулам, координаты центра тяжести С всего тела. Если тело имеет вырез, причем известны центр тяжести тела без выреза и центр тяжести вырезанного тела, то для определения координат центра тяжести используют метод отрицательных масс (частный случай метода разбиения).

На рисунке изображена квадратная пластина, сторона которой а. В пластине выполнено круглое отверстие с радиусом r=0,2а и координатами центра x2=-0,3а; у2=0. Координаты центра тяжести С, пластины без отверстия x1=0, у1=0. Рассмотрим два тела: пластину без отверстия и диск, соответствующий вырезанному отверстию. При использовании формул вес диска будем считать отрицательным. Тогда, где р — вес единицы площади пластины.

studfiles.net

Как найти центр тяжести?

Перед тем, как найти центр тяжести простых фигур, таких которые обладают прямоугольной, круглой, шарообразной или цилиндрической, а также квадратной формой, необходимо знать, в какой точке находится центр симметрии конкретной фигуру. Поскольку в данных случаях, центр тяжести будет совпадать с центром симметрии.

Центр тяжести однородного стержня располагается в его геометрическом центре. Если необходимо определить центр тяжести круглого диска однородной структуры, то для начала найдите точку пересечения диаметров круга. Она и будет центром тяжести данного тела. Рассматривая такие фигуры, как шар, обруч и однородный прямоугольный параллелепипед, можно с уверенностью сказать, что центр тяжести обруча будет находиться в центре фигуры, но вне ее точек, центр тяжести шара - геометрический центр сферы, и в последнем случае, центром тяжестью считается пересечение диагоналей прямоугольного параллелепипеда.

Центр тяжести неоднородных тел

Чтобы найти координаты центра тяжести, как и сам центр тяжести неоднородного тела, необходимо разобраться, на каком отрезке данного тела располагается точка, в которой пересекаются все силы тяжести, действующие на фигуру, если ее переворачивать. На практике для нахождения такой точки подвешивают тело на нить, постепенно меняя точки прикрепления нити к телу. В том случае, когда тело находится в равновесии, то центр тяжести тела будет лежать на линии, которая совпадает с линией нити. В противном случае сила тяжести приводит тело в движение.

Возьмите карандаш и линейку, начертите вертикальные прямые, которые визуально будут совпадать с нитевыми направлениями (нити, закрепляемые в различных точках тела). Если форма тела достаточно сложная, то проведите несколько линий, которые будут пересекаться в одной точке. Она и станет центром тяжести для тела, над которым вы производили опыт.

Центр тяжести треугольника

elhow.ru

Тема 1.6. Центр тяжести тела

⇐ ПредыдущаяСтр 3 из 7Следующая ⇒

Тема относительно проста для усвоения, однако крайне важна при изучении курса сопротивления материалов. Главное внимание здесь необходимо обратить на решение задач как с плоскими и геометрическими фигурами, так и со стандартными прокатными профилями.

 

Вопросы для самоконтроля

1. Что такое центр параллельных сил?

Центр параллельных сил есть точка, че­рез которую проходит линия равнодействую­щей системы параллельных сил, прило­женных в заданных точках, при любом изменении на­правления этих сил в простран­стве.

2. Как найти координаты центра параллельных сил?

Для определения координат центра параллельных сил воспользуемся теоремой Вариньона.

Относительно оси x

 

Mx(R) = ΣMx(Fk), -yCR = ΣykFk и yC = ΣykFk /ΣFk.

 

Относительно оси y

 

My(R) = ΣMy(Fk), -xCR = ΣxkFk и xC = ΣxkFk /ΣFk.

 

Чтобы определить координату zC, повернем все силы на 90° так, чтобы они стали параллельны оси y (рисунок 1.5, б). Тогда

 

Mz(R) = ΣMz(Fk), -zCR = ΣzkFk и zC = ΣzkFk /ΣFk.

 

Следовательно, формула для определения радиус-вектора центра параллельных сил принимает вид

 

rC = ΣrkFk /ΣFk.

 

3. Что такое центр тяжести тела?

Центр Тяжести-неизменно связанная с твердым телом точка, через которую проходит равнодействующая сил тяжести, действующих на частицы этого тела при любом положении тела в пространстве. У однородного тела, имеющего центр симметрии (круг, шар, куб и т. д.), центр тяжести находится в центре симметрии тела. Положение центра тяжести твердого тела совпадает с положением его центра масс.

4. Как найти центр тяжести прямоугольника, треугольника, круга?

 

Для нахождения центра тяжести треугольника, необходимо нарисовать треугольник – фигуру, состоящую из трех отрезков, соединенных между собой в трех точках. Перед тем, как найти центр тяжести фигуры, необходимо, используя линейку, измерить длину одной стороны треугольника. В середине стороны поставьте отметку, после чего противоположную вершину и середину отрезка соедините линией, которая называется медианой. Тот же самый алгоритм повторите со второй стороной треугольника, а затем и с третьей. Результатом вашей работы станут три медианы, которые пересекаются в одной точке, которая будет являться центром тяжести треугольника. Если необходимо определить центр тяжести круглого диска однородной структуры, то для начала найдите точку пересечения диаметров круга. Она и будет центром тяжести данного тела. Рассматривая такие фигуры, как шар, обруч и однородный прямоугольный параллелепипед, можно с уверенностью сказать, что центр тяжести обруча будет находиться в центре фигуры, но вне ее точек, центр тяжести шара - геометрический центр сферы, и в последнем случае, центром тяжестью считается пересечение диагоналей прямоугольногопараллелепипеда.

5. Как найти координаты центра тяжести плоского составного сечения?

 

Метод разбиения: если плоскую фигуру можно разбить на конечное число таких частей, для каждой из которых положение центра тяжести известно, то координаты центра тяжести всей фигуры опредляются по формулам:

ХC = ( sk xk ) / S; YC = ( sk yk ) / S,

где xk, yk - координаты центров тяжести частей фигуры;

sk - их площади;

S = sk - площадь всей фигуры.

 

 

6. Центр тяжести

 

 

1. В каком случае для определения центра тяжести достаточно определить одну координату расчетным путем?

В первом случае для определения центра тяжести достаточно определить одну координату Тело разбивается на конечное число частей, для каждой из которых положение центра тяжести C и площадь S известны. Например, проекцию тела на плоскость xOy (рисунок 1.) можно представить в виде двух плоских фигур с площадями S1 и S2 (S = S1 + S2). Центры тяжести этих фигур находятся в точках C1(x1, y1) и C2(x2, y2). Тогда координаты центра тяжести тела равны

 

Так как центры фигур лежат на оси ординат (х = 0), то находим только координату Ус.

2 Как учитывается площадь отверстия в фигуре 4 в формуле для определения центра тяжести фигуры?

Метод отрицательных масс

Этот метод заключается в том, что тело, имеющее свободные полости, считают сплошным, а массу свободных полостей – отрицательной. Вид формул для определения координат центра тяжести тела при этом не меняется.

Таким образом, при определении центра тяжести тела, имеющего свободные полости, следует применять метод разбиения, но считать массу полостей отрицательной.

 

В результате изучения темы студент должен:

иметь представление о центре параллельных сил и его свойствах;

знатьформулы для определения координат центра тяжести плоских фигур;

уметьопределять координаты центра тяжести плоских фигур простых геометрических фигур и стандартных прокатных профилей.

ЭЛЕМЕНТЫ КИНЕМАТИКИ И ДИНАМИКИИзучив кинематику точки, обратите внимание на то, что прямолинейное движе­ние точки как неравномерное, так и равномерное всегда характеризуется наличием нормального (центростремительного) ускорения. При поступательном движении тела (характеризуемом движением любой его точки) применимы все формулы кинемати­ки точки. Формулы для определения угловых величин тела, вращающегося вокруг неподвижной оси, имеют полную смысловую аналогию с формулами для определе­ния соответствующих линейных величин поступательно движущегося тела.

Тема 1.7. Кинематика точкиПри изучении темы обратите внимание на основные понятия кинематики: ускорение, скорость, путь, расстояние.

 

Вопросы для самоконтроля

1. В чем заключается относительность понятий покоя и движения?

 

Механическое движение -это изменение движения тела, или (его частей) в пространстве относительно др. тел с течением времени. Полет брошенного камня, вращение колеса- примеры механического движения.

2. Дайте определение основных понятий кинематики: траектории, расстоянию, пути, скорости, ускорению, времени.

 

Скорость – это кинематическая мера движения точки, характеризующая быстроту изменения ее положения в пространстве. Скорость является векторной величиной, т. е. она характеризуется не только модулем (скалярной составляющей), но и направлением в пространстве.

Как известно из физики, при равномерном движении скорость может быть определена длиной пути, пройденного за единицу времени: v = s/t = const (предполагается, что начало отсчета пути и времени совпадают). При прямолинейном движении скорость постоянна и по модулю, и по направлению, а ее вектор совпадает с траекторией.

Единица скорости в системе СИ определяется соотношением длина/время, т. е. м/с.

Ускорение есть кинематическая мера изменения скорости точки во времени. Другими словами - ускорение - это скорость изменения скорости. Как и скорость, ускорение является величиной векторной, т. е. характеризуется не только модулем, но и направлением в пространстве.

При прямолинейном движении вектор скорости всегда совпадает с траекторией и поэтому вектор изменения скорости тоже совпадает с траекторией.

Из курса физики известно, что ускорение представляет собой изменение скорости в единицу времени. Если за небольшой промежуток времени Δt скорость точки изменилась на Δv, то среднее ускорение за данный промежуток времени составило: аср = Δv/Δt.

Среднее ускорение не дает представление об истинной величине изменения скорости в каждый момент времени. При этом очевидно, что чем меньше рассматриваемый промежуток времени, во время которого произошло изменение скорости, тем ближе значение ускорения будет к истинному (мгновенному). Отсюда определение: истинное (мгновенное) ускорение есть предел, к которому стремится среднее ускорение при Δt, стремящемся к нулю:

а = lim аср при t→0 или lim Δv/Δt = dv/dt.

Учитывая, что v = ds/dt, получим: а = dv/dt = d2s/dt2.

Истинное ускорение в прямолинейном движении равно первой производной скорости или второй производной координаты (расстояния от начала отсчета перемещения) по времени. Единица ускорения - метр, деленный на секунду в квадрате (м/с2).

Траектория — линия в пространстве, вдоль которой движется материальная точка.Путь — это длина траектории. Пройденный путь l равен длине дуги траектории, пройденной телом за некоторое время t. Путь – скалярная величина.

Расстояние определяет положение точки на ее траектории и отсчитывается от некоторого начала отсчета. Расстояние является алгебраической величиной, так как в зависимости от положения точки относительно начала отсчета и от принятого направления оси расстояний оно может быть и положительным, и отрицательным. В отличие от расстояния путь, пройденный точкой, всегда определяется положительным числом. Путь совпадает с абсолютным значением расстояния только в том случае, когда движение точки начинается от начала отсчета и совершается по траектории в одном направлении.

В общем случае движения точки путь равен сумме абсолютных значений пройденных точкой расстояний за данный промежуток времени:

 

3. Какими способами может быть задан закон движения точки?

1.Естественный способ задания движения точки.

 

При естественном способе задания движения предполагается определение параметров движения точки в подвижной системе отсчета, начало которой совпадает с движущейся точкой, а осями служат касательная, нормаль и бинормаль к траектории движения точки в каждом ее положении. Чтобы задать закон движения точки естественным способом необходимо:

1) знать траекторию движения;

2) установить начало отсчета на этой кривой;

3) установить положительное направление движения;

4) дать закон движения точки по этой кривой, т.е. выразить расстояние от начала отсчета до положения точки на кривой в данный момент времени ∪OM=S(t) .

2.Векторный способ задания движения точки

В этом случае положение точки на плоскости или в пространстве определяется вектором-функцией. Этот вектор откладывается от неподвижной точки, выбранной за начало отсчета, его конец определяет положение движущейся точки.

3.Координатный способ задания движения точки

В выбранной системе координат задаются координаты движущейся точки как функции от времени. В прямоугольной декартовой системе координат это будут уравнения:

 

 

4. Как направлен вектор истинной скорости точки при криволинейном движе­нии?

 

При неравномерном движении точки модуль ее скорости с течением времени меняется. Представим себе точку, движение которой задано естественным способом уравнением s = f(t).

 

Если за небольшой промежуток времени Δt точка прошла путь Δs, то ее средняя скорость равна:

vср = Δs/Δt.

Средняя скорость не дает представления об истинной скорости в каждый данный момент времени (истинную скорость иначе называют мгновенной). Очевидно, что чем меньше промежуток времени, за который определяется средняя скорость, тем ближе ее значение будет к мгновенной скорости.

Истинная (мгновенная) скорость есть предел, к которому стремится средняя скорость при Δt, стремящемся к нулю:

v = lim vср при t→0 или v = lim (Δs/Δt) = ds/dt.

Таким образом, числовое значение истинной скорости равно v = ds/dt. Истинная (мгновенная) скорость при любом движении точки равна первой производной координаты (т. е. расстояния от начала отсчета перемещения) по времени.

При Δt стремящемся к нулю, Δs тоже стремится к нулю, и, как мы уже выяснили, вектор скорости будет направлен по касательной (т. е. совпадает с вектором истинной скорости v). Из этого следует, что предел вектора условной скорости vп, равный пределу отношения вектора перемещения точки к бесконечно малому промежутку времени, равен вектору истинной скорости точки.

 

 

5. Как направлены касательное и нормальное ускорения точки?

Направление вектора ускорения совпадает с направлением изменения скорости Δ = - 0

Касательное ускорение в данной точке направлено по касательной к траектории движения точки; если движение ускоренное, то направление вектора касательного ускорения совпадает с направлением вектора скорости; если движение замедленное – то направление вектора касательного ускорения противоположно направлению вектора скорости.

6. Какое движение совершает точка, если касательное ускорение равно нулю, а нормальное не изменяется с течением времени?

Равномерное криволинейное движение характеризуется тем, что численное значение скорости постоянно (v = const), скорость меняется лишь по направлению. В этом случае касательное ускорение равно нулю, так как v = const (рис.б),

а нормальное ускорение не равно нулю, так как r — конечная величина.

7. Как выглядят кинематические графики при равномерном и равнопеременном движении?

 

При равномерном движении тело за любые равные промежутки времени проходит равные пути. Для кинематического описания равномерного прямолинейного движения координатную ось OX удобно расположить по линии движения. Положение тела при равномерном движении определяется заданием одной координаты x. Вектор перемещения и вектор скорости всегда направлены параллельно координатной оси OX. Поэтому перемещение и скорость при прямолинейном движении можно спроецировать на ось OX и рассматривать их проекции как алгебраические величины.

При равномерном движении путь изменяется, согласно линейной зависимости . В координатах . Графиком является наклонная линия.

В результате изучения темы студент должен:

иметь представлениео пространстве, времени, траектории; средней и истиной скорости;

знатьспособы задания движения точки; параметры движения точки по заданной траектории.

Читайте также:

  1. D-технология построения чертежа. Типовые объемные тела: призма, цилиндр, конус, сфера, тор, клин. Построение тел выдавливанием и вращением. Разрезы, сечения.
  2. I. ПОЧЕМУ СИСТЕМА МАКАРЕНКО НЕ РЕАЛИЗУЕТСЯ
  3. I. Теоретические основы использования палочек Кюизенера как средство математического развития дошкольников.
  4. II. Система обязательств позднейшего права
  5. II. Соотношение — вначале самопроизвольное, затем систематическое — между положительным мышлением и всеобщим здравым смыслом
  6. II.2.6. Методы математической статистики
  7. IV. Тематика и перечень курсовых работ и рефератов.
  8. IV. Фитнес-центры в Санкт-петербурге
  9. IX. СТРОИТЕЛЬСТВО, БОДИБИЛДИНГ ТЕЛА, ХАРАКТЕРА, УМА, ПАМЯТИ.
  10. MS Word. Работа с математическими формулами
  11. VI. ОБСЛЕДОВАНИЕ БОЛЬНОГО ПО ОРГАНАМ И СИСТЕМАМ
  12. VI. СЕКСУАЛЬНАЯ ЭНЕРГИЯ. ЦЕНТРЫ НАСЫЩЕНИЯ. ЧТО ЖЕ ЭТО ТАКОЕ, «СЕКСУАЛЬНАЯ РЕВОЛЮЦИЯ»

lektsia.com


Смотрите также